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Nonlinear stability of mixed convection
flow under non-Boussinesq conditions.

Part 2. Mean flow characteristics
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(Received 10 January 1998 and in revised form 26 May 1999)

Based on amplitude expansions developed in Part 1 (Suslov & Paolucci 1999), we
examine the mean flow characteristics of non-Boussinesq mixed convection flow of
air in a vertical channel in the vicinity of bifurcation points for a wide range of
temperature differences between the walls, and Grashof and Reynolds numbers. The
constant mass flux and constant pressure gradient formulations are shown to lead
to qualitatively similar, but quantitatively different, results. The physical nature of
the distinct shear and buoyancy disturbances is investigated, and detailed mean flow
and energy analyses are presented. The variation of the total mass of fluid in a flow
domain as disturbances develop is discussed. The average Nusselt number and mass
flux are estimated for supercritical regimes for a wide range of governing parameters.

1. Introduction
Convection plays a significant role in many technical applications. Frequently, it de-

fines the major mechanism for heat and mass transfer in fluids. It was shown recently
in Suslov & Paolucci (1995a, b, 1997b) that the fluid property variations within the
domain can lead to flows substantially different from those predicted based on models
such as the conventional Boussinesq approximation of the Navier–Stokes equations.
Most commonly, significant fluid property variations are caused by large temperature
gradients between different regions within the flow. Indeed such a situation typically
occurs, for example, in heat exchangers, chemical vapour deposition reactors, and
thermal insulation systems of nuclear reactors. The characteristic temperature differ-
ence in such applications is comparable with the average temperature of the fluid.
Naturally, variations of fluid density, viscosity and thermal conductivity cannot be
neglected in such conditions.

In our earlier works (Suslov & Paolucci 1995a, b) we have undertaken a linear anal-
ysis of such flows with respect to periodic disturbances and investigated the effect of
fluid property variations on the stability of a parallel shear flow in a conduction state.
In particular, the boundary of instability as well as spatial eigenfunctions which define
the form of periodic disturbances were computed. While linear analysis is useful to
obtain qualitative characteristics of resulting unstable flows, it does not provide quanti-
tative information on the actual size of the disturbances. For this, nonlinear analysis is
necessary.

† Current Address: Department of Mathematics and Computing, University of Southern
Queensland, Toowoomba, Queensland 4350, Australia.
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Typically, weakly nonlinear analysis is based on an asymptotic expansion. The am-
plitude of disturbances is a convenient and frequently preferred choice of the small pa-
rameter for such an expansion (see, for example, discussions in Watson 1960; Herbert
1983; Suslov & Paolucci 1997b). Then the solution to the problem is sought in the
form

u = u00(x) + [A(t)u11(x) exp (iαy) + c.c.] + |A(t)|2u20(x) + · · · , (1)

where c.c. denotes the complex conjugate of the preceding expression within the
brackets (see Part 1, Suslov & Paolucci 1999). The above equation assumes that
the bifurcation of a steady one-dimensional basic state u00(x) into an unsteady two-
dimensional periodic state is being investigated. The general derivation of the form
of such an expansion is given in Suslov & Paolucci (1997b) for the flow of a fluid
with arbitrary property variations and generalized for the flow of such a fluid in open
systems in Part 1. Generally, one is primarily interested in the leading-order term of
the equilibrium state attained after the bifurcation. This state is characterized by the
equilibrium amplitude Ae and by the eigenfunction u11(x) of the linear problem. The
equilibrium amplitude corresponds to a fixed point of the Landau equation which
governs the time evolution of the disturbance amplitude (see Part 1). The derivation
of the Landau equation requires knowledge of the mean flow correction u20(x) and
other second-order terms which arise in expansion (1). Thus, on the surface, it appears
that the mean flow correction just plays a passive role in weakly nonlinear analysis.
This is not so because even if both the equilibrium amplitude and the eigenfunction
of the linear problem are known, they do not provide any information on integral
characteristics of the flow past bifurcation since the contribution of the leading term
of the disturbance to the mean motion is zero owing to the spatial (and possibly
temporal) periodicity. Thus, such important characteristics of the flow as the mean
flow rate and heat flux as well as the energy balance cannot be determined solely
by the leading-order approximation of the disturbance. One has to consider second-
order correction terms to remove this limitation. The deficiency of the leading-order
approximation becomes even more of a problem when one has to analyse the selection
between several instability modes which are driven by different physical mechanisms,
and which become equally important in the vicinity of codimensional points where
a number of critical modes compete with each other (Suslov & Paolucci 1997a). As
shown in Suslov & Paolucci (1995b), competition between the different modes of
instability in non-Boussinesq mixed convection flow is found for multiple values in
the governing parameters space. The present paper aims to extend the discussion
of the modes obtained in Suslov & Paolucci (1995b) by considering the mean flow
corrections arising from these modes.

Note that, in contrast to the Boussinesq case, under non-Boussinesq conditions the
density of the fluid changes with time. This means that in general the total mass
of the fluid in the system changes. Such a situation requires a special treatment in
the weakly nonlinear analysis which is addressed in Part 1. In this paper we provide
numerical results characterizing this change of the total mass of fluid in a channel.

This work is organized as follows. First, the problem is formulated for two physically
distinct cases of fluid flow within a channel: fixed average longitudinal pressure
gradient and fixed average mass flux. Next, the expansion procedure is outlined and
properties of the resulting system of equations are discussed. Finally, the theory is
applied to the non-Boussinesq mixed convection flow of air in a vertical channel.
Results are given for a wide range of temperature differences between the walls, and
Grashof and Reynolds numbers.
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2. Problem definition and governing equations
A two-dimensional mixed convection flow between two vertical infinite isothermal

plates separated by a distance H and maintained at the temperature difference
∆T = T ∗h − T ∗c is governed by the low-Mach-number equations (Paolucci 1992)
written in non-dimensional form as

∂

∂t
(ρui) +

∂

∂xj
(ρuiuj) = −∂Π

∂xi
+
Gr

2ε
(ρ− 1)ni +

∂τij

∂xj
, (2)
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(
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+
∂uj
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− 2

3
δij
∂uk

∂xk

]
. (5)

The boundary conditions for the problem are

u = v = 0 and T = 1± ε at x = 0, 1. (6)

The reader is referred to Part 1 for more details.
The dimensionless parameters appearing in the equations are the Grashof number,

the dimensionless temperature difference, and the Prandtl number:

Gr =
ρ2
r βrg∆TH3

µ2
r

, ε = 1
2
βr∆T , P r =

µrcpr

kr
, (7)

where βr is the coefficient of thermal expansion evaluated at the reference temperature.
As discussed in Part 1 the Reynolds number

Re =
ρrUrH

µr
(8)

is associated with the characteristic longitudinal velocity induced by the imposed
pressure gradient Π̂∗

Ur = − H2

12µr
Π̂∗, (9)

when the constant pressure gradient case is considered, or with the mass flux ṁ∗

Ur =
ṁ∗

ρrH
=
ρ∗v∗

ρrH
, (10)

when the mass flux is fixed. Generally, in non-Boussinesq flow the two definitions of
Ur lead to two different definitions of the Reynolds numbers. This difference will be
discussed further in the paper.

3. Expansions and mean flow equations
We assume that a small-amplitude periodic disturbance is superimposed on a fully

developed basic flow, which is stationary and does not depend on the longitudinal
coordinate. We then look for the solution of the problem (1)–(6) in the separable
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Fourier-decomposed form

W (t, x, y) = w00 + [A(t)w11E(y) + c.c.] + |A(t)|2w20 + · · · , (11)

g(t, x, y) = g00(x) + [A(t) g11(x)E(y) + c.c.] + |A(t)|2g20(x) + · · · , (12)

where wmn = (umn(x), vmn(x), Tmn(x), Πmn(x)+δ0nΠ̂m0y)T , gmn(x) are components of the
expansion of the property vector g= (ρ, cp, µ, k)

T , E= exp (iαy) is a Fourier component
of the disturbance corresponding to a wavenumber α, the first subscript corresponds
to the order of small disturbance amplitude A(t) and the second subscript denotes
the order of the Fourier exponent. The terms Π̂m0y in the expansion for the dynamic
pressure are necessary in order to take into account the constant vertical pressure
gradient required to maintain a fixed average mass flux through the channel when
disturbances are developing. In the case of a fixed longitudinal pressure gradient,
Π̂m0 = 0 for m > 0. In (11) other quadratic and higher-order terms are not written
out since they do not affect the discussion in this work (see Part 1 for the complete
expansion). As shown in Part 1 the evolution of the disturbance amplitude up to the
third order is given by the Landau equation

∂|A|2
∂t

= 2|A| (σR +KR|A|2) , (13)

where σR is the linear amplification rate (Suslov & Paolucci 1995b) and KR is the real
part of the Landau constant which has been evaluated for the complete parameter
space considered in Part 1. If KR < 0 (supercritical bifurcation) the stable equilibrium
value of the amplitude is given by |Ae|2 = −σR/KR for σR > 0 (note that |Ae| = 0
for σR 6 0 in this case). Estimation of the stable equilibrium amplitude in case of
subcritical bifurcation KR > 0 is much more involved and requires retaining at least
fifth-order terms in equation (13). This has not been done in the current work and
thus numerical results for the mean flow corrections will be reported only for regions
of supercritical bifurcations.

Substituting expansions (11) and (12) into system (1)–(6) we obtain a set of
equations at each order of amplitude A and Fourier component E. Here we consider
only solutions of the equations arising at |A|2E0 order. They can be written in vector
form as (

|A|2A0 +
∂|A|2
∂t0

B

)
w20 = |A|2F 20, (14)

where w20 = (u20, v20, T20, Π20)
T , u20 = v20 = T20 = 0 at x = 0, 1 and the linear

matrix operators A0 and B are defined in Part 1. The right-hand-side vector
F 20 = f20 − 2σRSρf20, where f20 = (f(1)

20 , f(2)
20 , f(3)

20 , f(4)
20 )T represents quadratic self-

interaction of the fundamental harmonic of the disturbance wave and is given in
Part 1 and f20 = (u00, v00, cp00T00, 1)T . The second term in the expression for F 20

accounts for the average momentum and thermal energy variation associated with
the total fluid mass change in a channel as disturbances develop (the overbar denotes
integration over the channel width)

Sρ20 = − ρ20 =
M0 −M(t)

|A(t)|2λ + O(|A(t)|). (15)

Introduction of these terms is justified in Part 1. Equation (14) describes the lowest-
order mean flow correction associated with the finite-amplitude periodic disturbance
wave.

The mean flow correction equation must be treated differently for the two physically
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Figure 1. Linear stability diagrams for (a) ε = 0.005, (b) ε = 0.3, and (c) ε = 0.6.
Labelled points are used in the discussion of figures 4–9.

different situations corresponding to fixed average vertical pressure gradient and fixed
average mass flux. In the first case we have Π̂20 = 0, while in the second case we
generally have a non-zero pressure gradient Π̂20, the magnitude of which is implicitly
defined by the constant mass flux condition ṁ20 = 0, where

ṁ20 ≡ |A|2(ρ20v00 + ρ00v20 + 2Re {ρ11v
∗
11}), (16)

and Re {·} denotes the real part of the expression.

4. Results
All numerical results were obtained using 50 spectral modes (see Suslov & Paolucci

1995b for a description of the numerical approximation) and the double-precision
version of IMSL routine (IMSL 1989) LSBRR.

We consider the spatial mean disturbance distributions given by (14) which can
be easily computed in the resonance-free regions (see the discussion of resonances in
Suslov & Paolucci 1997b). This enables us to augment the disturbance mode analysis
based solely on eigenfunctions of the linear problem given in Suslov & Paolucci
(1995b) by incorporating the lowest-order nonlinear effects. In general, the mean flow
distributions change as one proceeds beyond the bifurcation point in the parameter
space, but qualitatively they remain the same sufficiently far from the critical point.
Thus, it is convenient to analyse the mean flow results for parameters chosen along
the linear stability boundaries shown in figure 1. This is done here for the complete
range of Re considered.

We make clear from the outset that in general when the density of the fluid is
allowed to vary, the definition of the Reynolds number (8) based on (9) or (10)
results in different values. This difference is presented in figure 2 as a function of the
Reynolds number based on (9) (fixed average pressure gradient) and where

ṁ00 = ρ00v00 (17)

is the mass flux associated with the basic flow. We see that the absolute value of
this difference increases with the Reynolds number. It can reach up to 5% of the
Reynolds number in strongly non-Boussinesq regimes. In general the difference is
zero only in the mathematical limit ε → 0 (see figure 2). Thus, in contrast to the
Boussinesq limit, and because of our choice of normalization, the basic-flow mass flux
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is not an equivalent measure of the Reynolds number; here we have to distinguish
between them by introducing definition (17) in addition to that of the Reynolds
number. Typically, for non-Boussinesq regimes, and for the chosen equation of state,
|ṁ00| > |Re|.

Although the quantitative difference in the Reynolds numbers defined for fixed
mass flux and longitudinal pressure gradient cases is finite for the non-Boussinesq
regimes, our investigation shows that the mean flow results for these two cases are
qualitatively similar. Thus, in this work we focus on numerical results obtained for
one of these two possible formulations, namely for the case of fixed average pressure
gradient unless stated otherwise in the discussion.

4.1. Total fluid mass variations

In figure 3, the mass source term Sρ20 is presented as a function of the Reynolds
number for several values of ε. As follows from (15), the quantity −Sρ20 represents the
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change in mass of fluid enclosed within a unit channel length. The numerical value
of |Sρ20| increases substantially in the non-Boussinesq regimes, indicating the stronger
dependence of the total mass in the channel upon the magnitude of the developing
disturbances for higher values of ε. We have found upon evaluating the equilibrium
amplitudes and using (15) that when the Grashof number exceeds the critical value
by 15% (above supercritical bifurcation points) the actual total fluid mass change
in the channel is negligibly small for ε = 0.005 and can be up to 0.2% and 1.5%
for ε = 0.3 and ε = 0.6, respectively (see Suslov 1997 for details). Although not
shown in the figure, we note that lim

ε→ 0
Sρ20 = 0, and for small but finite temperature

differences between the walls Sρ20(Re)≈ − Sρ20(−Re). This symmetry is broken for
higher values of ε owing to nonlinear density variations and to the appearance of new
instability modes. In mixed convection flow (Re 6= 0 and Gr 6= 0), for all values of ε an
additional amount of fluid enters and remains within the channel when the average
dynamic pressure gradient is positive (Re< 0). When the dynamic pressure gradient
is reversed (Re> 0) in mixed convection flow as well as in the Poiseuille-type flows
fluid is discharged from the channel (Sρ20 > 0). This is a consequence of the nonlinear
density variation with temperature (not shown in the figures) which leads to the larger
density disturbance near the hot wall. As a result, when Re< 0 the fluid compression
near the hot wall, due to the counteracting upward buoyancy force and downward
dynamic pressure gradient force, is greater than the fluid expansion near the cold wall,
where both buoyancy and pressure forces act downward. When Re> 0, the situation
is the opposite: the fluid expands near the hot wall more than it compresses near the
cold wall, where now the counteraction between the buoyancy and dynamic pressure
forces takes place. This shows an indirect relationship between the thermodynamic
characteristics of the fluid and the dynamic pressure which, on the surface, seem to
be completely decoupled under the low-Mach-number approximation.

4.2. Mean-flow-correction distributions

In figures 4–7 we present the mean flow quantities for the disturbed flows. Since
the natural convection flow in the vertical channel is very similar to that in the
enclosure considered in Suslov & Paolucci (1997b), here we focus on the forced and
mixed convection cases only. For Poiseuille-type flow, the basic flow and mean flow
correction distributions are shown in figure 4. We note that the mean flow correction
arising at second order in disturbance amplitude loses symmetry even for very small
values of ε when fluid properties are allowed to vary. It is also instructive to note from
figure 4(a) that the cross-channel component of the mean velocity for Poiseuille-type
flow is non-zero in contrast to the solution of the conventional Boussinesq equations,
where density variation is neglected except in the buoyancy term. As shown in Part 1,
the continuity equation for the mean flow correction under non-Boussinesq conditions
takes the form

∂|A|2
∂t0

(ρ20 + Sρ20) + |A|2D(ρ00u20 + 2Re {ρ11u
∗
11}) = 0. (18)

It can be seen from (18) that u20 is expected to be zero at steady state only when
the density variation ρ11 is identically zero as in the Boussinesq equations. As dis-
cussed in Suslov & Paolucci (1997b), the density disturbance ρ11 tends to zero linearly
with ε and thus so does u20. Indeed, numerical experiments confirm this limiting
behaviour. Based on these observations, we may conclude that the range of temper-
ature differences where the standard Boussinesq equations can be used adequately
for weakly nonlinear analysis of convection in a realistic fluid might be severely re-
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stricted. Comparing figures 4(a) and 4(b) we observe a substantial difference between
flows in the Boussinesq and non-Boussinesq regimes. Consistent with the discussion
in Suslov & Paolucci (1995b), in non-Boussinesq regimes the disturbance maximum
is located in the region near the cold wall. Two mechanisms are responsible for
this asymmetry. For the chosen fluid property variations, both viscosity and thermal
conductivity decrease as the local fluid temperature decreases. The lower viscosity
leads to a lower diffusion of momentum and thus to higher velocity gradients. The
lower thermal conductivity also leads to the appearance of regions of colder and,
consequently, denser fluid near x= 1 (see the temperature distribution in figure 4b).
Because of higher thermal conductivity, the mean temperature disturbance near the
hot wall is almost zero. Thus, the effect of buoyancy forces near the cold wall
favours a stronger downward disturbance flow. Although not shown here, in the
Boussinesq limit for negative Reynolds numbers (downward basic flow) the vertical
velocity distributions are symmetric with respect to the x-axis in comparison with
the ones presented in figure 4. The temperature distributions remain unchanged. In
this latter case the buoyancy effects oppose the effects of shear near the cold wall.
As a result, non-Boussinesq flow is more stable for negative Reynolds numbers (see
figure 1b). Note also that in contrast to Boussinesq flow where disturbances always
tend to decrease the mean vertical velocity, in non-Boussinesq forced convection (see
points 1 and 5 in figure 11b and the discussion in § 4.5) the disturbances enhance
the vertical flow in the middle part of the channel and thus increase the mass flux
through the channel when the average pressure gradient is fixed. The disturbance
velocity distributions shown in figure 4 for Poiseuille-type flows reveal almost a sin-
gular behaviour near the walls. This indicates that the nonlinear (quadratic) terms
arising in the expansions due to the self-interaction of the fundamental disturbance
harmonic might become comparable with the magnitude of the linear terms if the
amplitude of the disturbance is sufficiently large. In this case the uniformity of
expansion (11)–(12) breaks down. This occurs in so-called nonlinear critical layers
(see Stuart 1960; Fujimura 1989; Benney & Bergeron 1969; Davis 1969; Benney
& Maslow 1974; Haberman 1972) when the disturbance amplitude flows become
of order (αRe)−2/3 (see Fujimura 1989). In our problem, though, this does not oc-
cur for Grashof numbers exceeding the critical one by as much as 15%. In these
regimes we estimate |Ae|(αRe)2/3 . 0.04 for the complete parameter range considered
(Suslov 1997).

As the Grashof and Reynolds numbers increase along line 3–2 in figure 1(a), the
mean disturbance distributions lose symmetry (see figure 5a): while the basic flow
velocity maximum moves towards the hot wall since buoyancy enhances the upward
motion, the maxima in the disturbance profiles move towards the cold wall where
disturbance dissipation processes are weaker owing to lower conductivity and viscosity.
At point 2 in figure 1(a) another mode, characterized by a smaller wavelength, also
becomes unstable according to linear theory. The mean disturbance distributions
corresponding to this mode are shown in figure 5(b) and are quite similar to the
ones just discussed. Consequently, the physical mechanism leading to both types of
disturbances is the same and due to the shear associated with the flow, although
the shear production mechanisms are different for the two modes. In fact, the shear
instability corresponding to line 1–2 in figure 1(a) is governed by the buoyancy (flow
is destabilized when the Grashof number is increased above line 1–2) while the flow is
destabilized because of the larger pressure gradient for the higher Reynolds numbers
to the right of line 3–2. The fact that these two modes of instability are very similar
to each other from the physical point of view is also confirmed by figure 1(b): the
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transition from mixed to purely forced convection becomes smooth in non-Boussinesq
regimes (the neighbourhood of point 5).

In the competition between the two instability modes at ε = 0.3 (at point 4 in
figure 1b, also see Suslov & Paolucci 1995b) the faster moving (and, consequently, less
flow-blocking) mode having a shorter wavelength is preferred for Re.−5150. The
mean flow distributions corresponding to the different instabilities are shown in figure
6. Since the physical mechanism for both instabilities is the same, the qualitative
behaviour of the mean flow correction quantities is similar for both modes, although
the shorter-wavelength mode has a much more evident roll structure than the longer-
wavelength mode. In fact, as can be seen from the first two columns of figure 6, the
relative role of transverse motion is stronger for the shorter-wavelength mode. Thus,
as the absolute value of Reynolds and Grashof numbers increases along line 0–4–3
in figure 1(b), the rolls, which arise from the shear instability, are stretched to such
an extent that the velocity disturbances are essentially longitudinal. This is discussed
in more detail in Suslov & Paolucci (1995b) and shown there in figure 12. At point
4 each of these long rolls breaks into smaller rolls with a wavelength approximately
fifteen times shorter and moving with a larger wave speed downstream.

In the strongly non-Boussinesq regime corresponding to ε = 0.6, a competition
between the shear- and buoyancy-driven instability modes occurs. As discussed in
Suslov & Paolucci (1995b), the buoyant instability is characterized by a much longer
wavelength than the shear instability and arises due to the nonlinear density variation
with temperature. When the flow becomes unstable due to the buoyant disturbance,
a colder fluid region exists near the middle of the channel. This can be seen from
the temperature distribution shown in figure 7(a). The buoyancy force acting on this
colder and denser core causes a strong downward disturbance flow (see the second
plot in figure 7a). The associated transverse motion is much weaker than that of the
shear-driven instability (compare plots in the two left-hand columns in figure 7). The
wave speed of the buoyancy-driven disturbance is always negative (Suslov & Paolucci
1995b). When the absolute value of the Reynolds number is increased (Re . −860
or Re & 88) the shear instability begins to dominate so that the rolls move in the
direction of the primary flow as shown in Suslov & Paolucci (1995b).

4.3. Average kinetic energy

In figure 8 we present the average kinetic energy of the flow. As in Suslov & Paolucci
(1997b), we define

〈Ek〉 = 〈Ek00〉+ |A|2〈Ek20〉+ O
(|A|4) , (19)

where

〈Ek00〉 = 1
2
ρ00v

2
00, (20)

〈Ek20〉 = [ρ00

(|u11|2 + |v11|2 + v00v20

)
+ 2v00 Re {ρ11v

∗
11}+ 1

2
ρ20v

2
00]. (21)

The basic-flow kinetic energy scale is chosen in such a way that its value is of the
same order for the two limiting cases of natural and forced convection. For all values
of ε we observe that the instability first occurs for a substantially less energetic
flow when the basic flow field is generated primarily by buoyancy forces (essentially
natural convection). The shear disturbances in the majority of cases decrease the
total kinetic energy of the flow (the ratio 〈Ek20〉/〈Ek00〉 is negative), although the
kinetic energy of the non-Boussinesq Poiseuille-type flows is slightly increased since,
as will be shown in figure 11 and discussed in § 4.5, the total mass flux through the
channel increases in these regimes owing to the developing disturbances. The buoyant
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disturbance appearing in highly non-Boussinesq regimes, as in the case of convection
in a closed cavity (Suslov & Paolucci 1997b), leads to more energetic motion in
the direction of gravity thus increasing the average flow kinetic energy for negative
Reynolds numbers. For positive Reynolds numbers, the pressure and buoyancy forces
oppose each other and as a consequence this competition gives rise to a less energetic
flow. Note that when the average pressure gradient is fixed, it is the mass flux through
the channel which defines largely the disturbance kinetic energy: the distributions of
relative average disturbance kinetic energy 〈Ek20〉/〈Ek00〉 are qualitatively very similar
to the relative average mass flux curves presented in figure 11.

Estimation of equilibrium amplitudes for a Grashof number 15% larger than the
critical value (Suslov & Paolucci 1995b) with (19) enables us to conclude that the
average kinetic energy of the forced convection flow changes just slightly (less than
1%) from the basic flow values for all regimes. The change is much greater for natural
convection. In that case shear disturbances decrease the average flow kinetic energy
by about 10% for ε = 0.005 and ε = 0.3, while buoyant disturbances increase the
flow kinetic energy by more than 30% for ε = 0.6.

To complete our discussion of the average energy of the disturbed flow, we note
that the thermal energy of the flow, which is defined by the thermodynamic pressure
(see Suslov & Paolucci 1997b), remains constant as the disturbances develop, since
under low-Mach-number conditions the thermodynamic pressure in an open system
remains constant if the ambient pressure is not changing.
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4.4. Average heat flux across the channel

In this subsection we look at the average heat flux across the channel. The conduction
heat flux, defined as

qc = q00 = − 1

2ε
k00 DT00

∣∣∣∣
x= 1

(22)

is computed in Suslov & Paolucci (1997b) for values of 0 < ε 6 0.6. It is shown
there that the conduction heat flux depends slightly on the value of the temperature
difference between the walls and remains very close to unity (see figure 11 in Suslov
& Paolucci 1997b). The mean-flow-correction heat flux is given by

q20 = − 1

2ε
k00 DT20

∣∣∣∣
x= 1

. (23)

Consequently, the average Nusselt number which represents the average cross-channel
heat flux for a periodically disturbed flow can be computed from

Nu = Nu(Gr, Re, ε) =
1

qc

[
1

λ

∫ y0+λ/2

y0−λ/2
q dy

]
x= 1

≈ 1 + |Ae|2 q20

q00

(24)

for any set of parameters. Our estimations show that for Grashof numbers 15%
larger than the critical value the Nusselt number increase due to the developing shear
disturbances in the case of large longitudinal pressure gradients can be up to 40%. In
contrast, in the natural convection case the Nusselt number increment is about 3%
for ε = 0.005 and it grows to about 5% for ε = 0.6. More detailed numerical results
for the average Nusselt number will be given later in this section.

The deviation from the conductive heat flux in the vicinity of the bifurcation points
is presented in figure 9 for different values of ε and for Grc along the curves shown
in figure 1 as a function of the Reynolds number. Its value is always positive and, as
expected, bifurcation associated with any disturbance mechanism leads to enhanced
heat transfer across the channel. Note also that a much more rapid heat flux increase
is expected after instability occurs for negative Reynolds numbers than for positive
ones in non-Boussinesq regimes. Another point to note from figure 9(c) is that the
buoyancy instability mode affects the heat flux to a much lower degree than the
shear-driven instability mode since the mean-flow-correction temperature gradient
associated with it is lower (see figure 6).
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βGr |βRe|
Re Present results Present results

Π̂∗ = const. ṁ∗ = const. Π̂∗ = const. ṁ∗ = const.
Fukui et al. Fukui et al.
ṁ∗ = const. ṁ∗ = const.

0 0.324 0.324 0.6508 0.000 0.000 —
20 0.329 0.324 0.6568 0.010 0.010 0.0008
40 0.344 0.325 0.6724 0.040 0.037 0.0050
60 0.369 0.327 0.6940 0.086 0.076 0.0154
80 0.395 0.328 0.7168 0.139 0.116 0.0317

100 0.404 0.327 0.7380 0.186 0.149 0.0515

Table 1. Comparison of the present results for the slopes of the Nusselt number curves evaluated at
the critical points Grc(Re) for ε = 0.005 with computations of Fukui et al. (1982) in the Boussinesq

limit (Π̂
∗

= const. and ṁ∗= const. correspond to the cases of fixed average longitudinal pressure
gradient and fixed average mass flux respectively).

Since for fixed ε both |Ae| and q20 entering (24) depend on Gr and Re, so does Nu.
Thus, in order to provide the quantitative results for a range of parameters close to
the critical ones we follow Fukui et al. (1982) and introduce the coefficients

βGr(Re, ε) =
∂Nu

∂δGr

∣∣∣∣
(Grc(Re, ε)Re, ε)

, βRe(Re, ε) =
∂Nu

∂δRe

∣∣∣∣
(Grc(Re, ε), Re, ε)

(25)

evaluated at the critical points. These coefficients enable one to estimate linearly
the actual value of Nu at the point (Gr, Re′, ε) in the vicinity of the critical point
(Grc(Re, ε), Re, ε) as

Nu(Gr, Re′, ε) ≈ 1 + βGrδGr + βReδRe, (26)

where

δGr = Gr/Grc(Re, ε)− 1, δRe = Re′/Re− 1. (27)

The numerical values of (25) are obtained using two-point finite difference approx-
imations of partial derivatives of (24) with δGr,Re = 10−4. In the Boussinesq limit
ε → 0 and for Re = 0, owing to the symmetry of the basic flow velocity profile
the flow considered in the present work becomes identical to that in a tall closed
cavity. This is confirmed by the agreement between the value of βGr = 0.324 given
in table 1 and the value of 0.34 reported in Suslov & Paolucci (1997b) on the flow
in an enclosure (the slight discrepancy is due to the fact that a larger number of
spectral modes is used in the present investigation). Comparison of the present re-
sults with those reported by Fukui et al. (1982) for Pr = 0.7 and Boussinesq mixed
convection flow in a differentially heated vertical channel is given in table 1. While
in qualitative agreement, our results differ quantitatively from those by Fukui et al.
(a similar discrepancy was noted in Suslov & Paolucci (1997b). The possible reason
for this discrepancy is that Fukui et al. assume that the flow preserves its spatial
structure predicted by linear analysis for infinitesimal disturbances even in the case
when the amplitude is finite, while in our approach we also take into account the
contribution of the second harmonic which is due to the nonlinear self-interaction of
the fundamental disturbance wave.

It is instructive to compare our predictions with experimental results. For Boussi-
nesq convection flow of air in a tall vertical differentially heated cavity, ElSherbiny,
Raithby & Hollands (1982) provide the following empirical correlation formula for
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the Nusselt number:

Nu =
[
1 + (0.0607Ra1/3)18

]1/18
for L/H = 110, Ra < 1.2× 104, (28)

where Ra = GrPr is the Rayleigh number. Other correlations are available in the
literature, but they are given for a wider range of the Rayleigh number (see Shewen,
Hollands & Raithby 1996, for example) and as a result are less accurate in the vicinity
of the bifurcation point. In order to compare our predictions with the experimental
data we first define the experimental ‘bifurcation’ point Raexp.c . It is necessary since the
transition from the conduction to the convection state in experimental conditions is
not abrupt (imperfect bifurcation) in contrast to what is predicted by linear stability
analysis. We estimate the value of Raexp.c to correspond to the inflection point in the
correlation. At this location, the slope of the Nusselt number curve is maximum,
which is also the case when the theoretical pitchfork bifurcation is considered and the
slope is computed at the critical point (the theoretical value for the critical Rayleigh
number Rac in the Boussinesq limit is 5706.7). Then

δ
exp.
Gr = Raexp.c

dNu

dRa

∣∣∣∣
Ra=Ra

exp.
c

, where
d2Nu

dRa2

∣∣∣∣
Ra=Ra

exp.
c

= 0. (29)

Using the above correlation formula we obtain δ
exp.
Gr = 0.331 for Raexp.c = 6256. The

relative discrepancy between the value estimated from the correlation formula and
the theoretical critical Rayleigh number is 10%. The discrepancy between our value of
0.324 and the correlation Nusselt number coefficient is 2% while the result of Fukui
et al. differs by 97% from the experiment. Thus our prediction is in much better
agreement with the experimental data in Boussinesq natural convection, but a more
accurate experiment in the vicinity of the transition is necessary to better estimate
the actual accuracy of our prediction. Unfortunately, to the authors’ knowledge such
accurate experimental data are not available at the moment.

We also note from table 1 that according to our computations the Nusselt number
coefficient in the case of fixed mass flux changes less as the Reynolds number increases
than in the case of fixed pressure gradient. This is because in the former situation,
as was discussed earlier, disturbances are more restricted in their growth and their
equilibrium amplitudes are smaller.

In figure 10 we show the Nusselt number coefficients estimated at the critical points
as functions of Reynolds number over a much wider range. Results are given only
for regions where the bifurcation from parallel to wavy periodic flow is supercritical
(KR

1 < 0, see Part 1). Note that, as follows from (27), negative values of βGr or βRe
correspond to cases when a parallel flow bifurcates to a periodic one as |Gr| or
|Re|, respectively, is decreased. The Nusselt number coefficients increase rapidly in
the vicinity of points where a change from supercritical to subcritical bifurcations
occurs. In these regions higher-order terms in the expansions have to be retained for
adequate predictions of the equilibrium disturbance amplitude. Since this is not done
in the current paper the βGr, Re-curves in figure 10 are truncated. The two branches in
figure 10(a) correspond to thermally driven (left) and pressure-driven Poiseuille-type
(right) flows in the Boussinesq limit (note that because of the symmetry with respect
to the Reynolds number, results are presented only for positive values of Re). Here,
flows characterized by large values of Gr and relatively small Re are called thermally
driven, while those with Re larger than the critical value for a pure Poiseuille flow
(Rec ≈ 7696.3 in our non-dimensionalization) and small Gr are called Poiseuille-type
flows. Consistent with the discussion in Fukui et al. (1982), for thermally driven flow
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the Grashof number influence on the channel heat transfer rate is stronger than that
of the Reynolds number (|βGr| > |βRe|). The situation is opposite for the Poiseuille-
type flows. This emphasizes the different physical nature of the heat flux enhancement
mechanisms found in the different regions of parameter space.

The two branches in figure 10(b) represent two different shear instabilities occurring
in the downward mixed convection flow in the slightly non-Boussinesq regime. The
curves are truncated in the vicinity of the codimension-2 point where a two-mode
interaction analysis is necessary to provide proper numerical predictions. This is again
beyond the scope of the present work. As seen from figure 10(b) effects of Gr and
Re on the heat flux become equally important (|βGr| ∼ |βRe|) when the temperature
difference between the walls is increased. Additionally we see that the long-wave shear
instability, which is dominant for smaller |Re| (Suslov & Paolucci 1995b), intensifies
the heat transfer between the walls to a larger degree than the short-wave shear
instability which dominates at higher |Re| (Suslov & Paolucci 1995b). This result is
anticipated since, as noted in Part 1, long-wave disturbances have larger amplitudes.
The heat transfer associated with the short-wave instability increases as the shear in
the basic flow becomes larger with increase in |Re|.

In the strongly non-Boussinesq regime, bifurcations associated with the shear
instability are always subcritical. Thus in figure 10(c) we present the Nusselt number
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coefficients only for the buoyant instability. In contrast to the shear modes, the
buoyant instability effect on the average Nusselt number depends weakly on the
Reynolds number except in the nearly natural convection regime (|Re| ≈ 0). There
the effect of the imposed pressure gradient on the heat flux becomes negligible
(|βRe| → 0) while the sensitivity of the Nusselt number to changes in Grashof number
increases substantially. The sharp increase in βGr for small |Re| is also partly due to
the closeness of the point where the bifurcation type changes from supercritical to
subcritical.

4.5. Average mass flux through the channel

The average fluid mass flux through the channel is another characteristic of the flow
of practical importance when the average longitudinal pressure gradient is maintained
fixed. Figure 11 shows the ratio of the mean mass flux correction to the basic-flow
mass flux which enters the expression for the total average mass flux

ṁ = ṁ00

[
1 +

ṁ20

ṁ00

+ O(|A|4)
]

(30)

(here ṁ20 is computed using (16) with |A| = 1 and ṁ00 is defined by (17)). This
ratio is singular near Re= 0, where ṁ00 = 0 and ṁ20 6= 0 (obviously, this singularity is
removable in (30)), and is always negative for Boussinesq convection, meaning that
the developing disturbance rolls (which are primarily caused by shear instability of
the basic flow, see Suslov & Paolucci 1995b) tend to block the channel, thus decreasing
the total mass flux when the pressure difference between the channel inlet and outlet
is kept fixed. For the most part, this remains the case for the range of parameter
space explored in non-Boussinesq flows. The only exception is in the narrow region
near Re = 0 and for flows of Poiseuille type (Gr ≈ 0), where developing disturbances
enhance the total mass flux. For small Reynolds numbers this is a direct consequence
of the nonlinear correlation between the disturbance density variation across the
channel and the velocity field: while the disturbance velocity tends to reduce the total
shear of the flow (i.e. the velocity gradient) and, consequently, the maximum flow
velocity (see figures 4–6 in Suslov & Paolucci 1997b), the thermal disturbances lead
to an increase in local density of the fluid such that the net effect on the mass flux is
positive. Poiseuille-type flows will be considered in more detail later.

The actual change in mass flux can be computed using (30) after the disturbance
amplitude is found. Our investigation shows that, for instance, when the Grashof
number exceeds the critical value by 15% (in supercritical bifurcations) the maximum
average mass flux change due to developing disturbances is about 1%, 4% or 15%
compared with the undisturbed flow for ε = 0.005, ε = 0.3 and ε = 0.6, respectively,
(see Suslov 1997 for details).

Similarly to the previous section, we approximate the average mass flux linearly in
the vicinity of bifurcation points as

ṁ(Gr′, Re′, ε) ≈ ṁ00(Grc(Re, ε), Re, ε)(1 + γGrδGr + γReδRe), (31)

where the mass flux coefficients

γGr(Re, ε) =
∂

∂δGr

(
ṁ20

ṁ00

)∣∣∣∣
(Grc(Re, ε), Re, ε)

,

γRe(Re, ε) =
∂

∂δRe

(
ṁ20

ṁ00

)∣∣∣∣
(Grc(Re, ε), Re, ε)

 (32)

are evaluated at the critical points.
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Figure 12. Average mass flux coefficients for regions of supercritical bifurcations as
functions of Reynolds number for (a) ε = 0.005, (b) ε = 0.3, and (c) ε = 0.6.
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In figure 12 we show the average mass flux coefficients estimated at the critical
points as functions of Reynolds number. Results are given for the same parameter
ranges as for the Nusselt number. As in figure 10(a), the two branches in figure 12(a)
correspond to thermally driven (left) and pressure-driven Poiseuille-type (right) flows
in the Boussinesq limit. Note that δGr > 0 and δRe < 0 for thermally driven flows, while
δGr < 0 and δRe > 0 for Poiseuille-type flows. Thus the products γGrδGr and γReδRe are
always negative. We conclude that, in the Boussinesq limit, for the complete range
of Reynolds numbers, developing disturbances decrease the mass flux through the
channel. Indeed rolls produced by instability induce cross-channel motion and result
in a blocking effect to the longitudinal flow.

For both instability branches in the weakly non-Boussinesq regime depicted in
figure 12(b), δGr > 0 and δRe < 0. Thus, similar to Boussinesq mixed convection flows,
instabilities arising when the temperature difference between the walls is moderate
lead to a similar flow-blocking effect. As discussed in Suslov & Paolucci (1995b), both
instabilities arising in the downward mixed convection flow at moderate temperature
differences between the walls have the same physical nature – shear. Earlier in this
paper we suggested that the major selection mechanism between these two instabilities
is the tendency of the flow to adjust to a state with smaller flow-blocking effect as the
intensity of the primary flow increases. Figure 12(b) confirms this conclusion: as the
absolute value of the Reynolds number increases, the dominant instability pattern
changes in such a way that the mean mass flux is affected by the developing instability
rolls to a much smaller degree (both mass flux coefficients decrease by a factor of
about 3.5 at the codimension-2 point).

Finally, in figure 12(c) we present the average mass flux coefficients for the buoyant
instability arising at small negative Reynolds numbers. The nearly singular behaviour
of the coefficients for Reynolds numbers close to zero is due to our normalization
combined with the fact that the basic-flow mean mass flux ṁ00 tends to zero (see
definitions (32) and earlier discussion). Since in this regime δGr > 0 and δRe < 0 we
conclude that the buoyancy effects associated with a strong nonlinear density variation
in non-Boussinesq regimes enhance the mean flow in the direction of gravity.

5. Summary
A weakly nonlinear theory which we have developed in Part 1 for the analysis

of low-Mach-number flows in open domains has been applied to predict average
characteristics of the flow of air in an open vertical channel with differentially heated
walls for a wide range of governing parameters in non-Boussinesq natural, forced
and mixed convection. The detailed linear stability results for distinct shear- and
buoyancy-driven instabilities given in Suslov & Paolucci (1995b) are complemented
with corresponding mean flow energetics in past bifurcation states. Based on the values
of the equilibrium disturbance amplitudes estimated in the regions of supercritical
bifurcations using the cubic Landau equation we provide numerical data for the
average mass flux through the channel and for the average Nusselt number for the
heat flux across the channel. These data are shown to be in encouraging agreement
with experimental results available for Boussinesq convection. The authors hope that
the very rich behaviour of non-Boussinesq convection flow discovered analytically
will inspire experimental research in this area, which to the authors’ knowledge has
not been undertaken to date. Experiments on accurate determination of quantitative
characteristics of the disturbed flow such as the average Nusselt number in the
vicinity of the bifurcation point would be especially valuable to estimate the accuracy
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of the present theory. Experiments for large temperature differences between the walls
similar to the ones conducted by Fukui et al. (1982) are necessary to investigate the
influence of fluid property variations on the flow pattern, especially in regimes where
the theory predicts the existence of codimension-2 points with competing instabilities
of different physical nature.
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